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ABSTRACT 

 

We present an efficient and robust method for direct 
registration between fiber bundles of interest and the 
complete White Matter (WM) tractography of the same or 
another brain. The method does not require any previous 
registration between the brains, such as DTI registration, and 
it can be used for both intra and inter-subject registration. 
The algorithm is inspired by the well known iterative closest 
point method. Here, 3D points are replaced by feature 
vectors representing WM fibers, and the neighborhood is 
determined by the efficient approximation framework of the 
locality sensitive hashing. Initial results demonstrate the 
successful application of the proposed registration method to 
the automatic extraction of anatomical WM structures in un-
segmented brain tractographies 
 

Index Terms—White matter, DTI, tractography, 
registration, Iterative closest point 
 

1. INTRODUCTION 
 

In the last ten years, Diffusion Tensor Imaging (DTI) and 
tractographic reconstructions are changing the way we 
perceive White Matter (WM) in MRI brain [1,2]. As is the 
case with structural MRI, registration tools are required to 
enable the comparison between several DTI studies. The 
main difference between the registration of scalar and tensor 
images, is that in addition to the estimation of a geometrical 
deformation, DTI registration must also take care of re-
orienting each tensor to maintain consistency with the 
surrounding anatomical structure [3,4]. A classical approach 
is to perform DTI registration and then compute 
tractographies in the warped and target brain. Alternatively, 
scalar DTI images such as fractional anisotropy can be 
aligned and the recovered transformation applied directly to 
the fibers. A joint clustering step of the tractographies is 
then implemented to obtain cluster level correspondences 
[5]. More recently, the statistical analysis of fractional 
anisotropy along fiber tracts has been proposed for 
quantitative analysis of DTI [6]. It includes the generation of 
a mean fiber tract by co-registration of its fibers using a 
Procrustes analysis. The registration is limited to fibers 
belonging to a single tract of a single subject (intra-subject 
registration).  The main contributions of this paper are: 1) 

Given a bundle of interest (hereafter termed BOI) extracted 
from a brain tractography, extract automatically the 
anatomically corresponding bundle in any other brain 
tractography. 2) The method is robust and efficient. 3) No 
need for previous registration of the original DTI scans.  
This paper is organized as follows: In section 2 we will 
describe the proposed algorithm. Experimental results on 
both synthetic and real data will be presented in section 3, 
followed by a summary and conclusions in section 4. 
 

2. ALGORITHM DESCRIPTION 
 

Denote by Mi , i=1..n and Tj , j=1..m a model and target set 
of fibers, respectively. Each fiber is described by a sequence 
of 3D coordinates describing its trajectory between the 
extremities it connects. In this work, the sets M and T are 
obtained by tractographic reconstruction of the DTI data 
using DtiStudio [7]. The model and target sets may originate 
from the same brain, as in the case of intra-subject 
registration for longitudinal studies. Alternatively, the sets 
may belong to distinct brains for inter-subject registration. 
For the target set, we will consider the full set of WM fibers 
reconstructed by tractography. For the model set we will 
consider WM structures such as the Corpus Callosum or the 
Corticospinal tract that may constitute anatomical BOIs. Our 
goal is to match between model and target fibers by finding 
for each model fiber Mi, the target fiber Tj that best 
corresponds. At the same time, we want to perform spatial 
registration between the corresponding fiber sets.  If we 
think of a fiber as a point in some feature space, the 
matching-registration problem can be viewed as a (feature) 
point sets matching-registration. We adopt this approach by 
extending the well known iterative closest point (ICP) 
algorithm for 3D point sets [8] to an iterative closest fiber 
(ICF) algorithm for tractographic fiber sets. The main ICF 
steps are: 1) Represent each model and target fiber by a 
distinct feature vector. 2) For each model fiber Mi find the 
“closest”, that is most similar, target fiber Tj. 3) Given the 
set of fiber correspondences found in 2), fit a linear 
geometric transformation between model and target fibers. 
4) Warp the model fiber set using the transformation 
computed in 3). 5) Repeat from point 2) until convergence 
or a maximum number of iterations is reached. 6) Return the 
final correspondence set between model and target fibers 
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together with the combined geometric transform between 
original (non-warped) model and target sets. 
 
2.1. Fiber Representations 
 

We now define two feature space representations of the 
fibers that will be motivated and used in the following steps 
of the algorithm. 
 

2.1.1. Spatial Coordinates Sequence 
The fibers generated by DtiStudio are represented by a 
variable number of points. Therefore, we re-sample each 
fiber f along its trajectory at a fixed number n of uniformly 
distributed points. Each fiber is now represented by the same 
number of points n. By linearly appending the re-sampled 
coordinate sequence, (xi,yi,zi), we obtain the 1x3n   feature 
vector : 

)(]nz,ny,nx,,z,y,x[csf 1111         
The number of samples, n, is an empirical compromise 
between dimensionality and fidelity of the fiber 
representation. 
 

2.1.2. Direction vectors Sequence 
An alternative representation is derived from (1), by 
replacing every two successive points in the feature vector 
with the unit direction vector (u1,v1,w1) they define.  Note 
that n sample points defining a fiber in the previous 
representation will result in n-1 unit direction vectors. The 
corresponding 1x3(n-1) feature vector is obtained, as before, 
by linearly appending the direction vectors sequence:  

)(]nw,nv,nu,,w,v,u[dsf 2111                                             
Note that (2) is inherently a shift and scale invariant 
representation of a fiber 
 

2.2. Fiber Similarity 
 

Consider a given pair Mi, Tj of corresponding model-target 
fibers before the first iteration. For the sake of simplicity we 
will consider that both model and target sets are extracted 
from the same brain. Since Mi and Tj are corresponding 
fibers, we must have: 

)3(),(maxarg jTMS ni
n

    

where S is an appropriate fiber similarity function. At this 
stage, however, the relative orientation, position and scale 
differences between model and target sets are still arbitrary. 
Therefore, S should mainly rely on shape to provide a 
meaningful similarity score. We define R(U,V), the vector 
correlation coefficient (VCC) between two 3-dimensional 
random vectors U=(ux, uy, uz) and V=(vx, vy, vz) on a unit 
sphere, as [9]:  
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Where Ui and Vi are the sequences of k=n-1 realizations of 
random vectors U and V, respectively. For perfect 
correlation, R approaches +1 if the sequences are in the 
same order or to -1 if they are in reversed order (reflection). 
As correlation decreases, abs(R) moves towards 0. The 
feature vector of (2) is actually a sequence of unit direction 
vectors, therefore it can be viewed as a sequence of random 
vectors on a unit sphere and we can compute the VCC 
between any pair of model and target fibers represented by 
(2). The VCC is shown to be rotation invariant [9]. The shift 
and scale invariance of (2) combined with rotation 
invariance of the VCC are particularly useful for the first 
iteration of the ICF algorithm, when the fiber sets are still 
arbitrarily misaligned.  On the other hand, when iterations 
proceeds and misalignment progressively decreases, position 
orientation and scale information may be important in order 
to increase the specificity of the similarity function. In 
example, let’s suppose that a given fiber shape appears in 
several identical instances in the target brain but at slightly 
different positions or orientations. A fiber similarity 
measurement exclusively based on the VCC would be 
indifferent to these position\orientation shifts, making the 
preferred match ambiguous and limiting the matching 
accuracy. At the first iteration, VCC robustness to large 
misalignment prevails over its limitations. As misalignment 
decreases, however, trading up VCC invariance for more 
specific l2 distance leads to higher matching accuracy. This 
suggests a two-fold strategy for fiber similarity 
measurement. For the first iteration we take as similarity 
function, S, the VCC between model and target fibers in the 
feature vector representation of (2). We delimit the range of 
tolerated position, orientation and scaling misalignment,   
(DP,DR,DS) by multiplying VCC with a threshold function, 
TF(DP,DR,DS), that forces S to zero for extreme 
misalignments: 

s,R,P)))jT(dsf),iM(dsf(R(abs)jT,iM(itS TF1
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For the following iterations, we define S as a decreasing 
function of the normalized l2 distance between model and 
target fibers in the feature vector representation of (1): 
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where C is a normalizing constant. In practice, as we look 
for the nearest target fiber for every model fiber, we replace 
the naïve computation of l2 distances with a fast approximate 
nearest-neighbor (NN) computation provided by the locality 
sensitive hashing framework (LSH) [10]. With LSH, the 
target data is embedded in the bins of several hash tables in 
a pre-processing step. The hash functions have the property 
of assigning neighboring feature points to the same bins with 
an elevated probability. The resulting speed-up with regard 
to naïve NN computation is of at least two orders of 
magnitude in our application.  
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2.3. Geometric Transformation Fitting 
 

At each ICF iteration we estimate a 12 parameters 3D affine 
transformation that best warps, in the least squares sense, the 
model fibers set into the corresponding target fibers found in 
the previous step. The choice of the affine transform is 
motivated by our goal of matching corresponding fibers 
from the model and target sets. For this purpose we need 
enough flexibility to compensate for global orientation, 
position and (per-axis) scale differences between the sets. 
The affine model offers this flexibility while remaining very 
easy to fit. Higher order transforms can be considered to 
allow for local deformations. For fiber matching however, 
perfect warping between model and target fiber is not 
required. Similarly, when building a statistical WM atlas 
from a number of aligned tracts, local deformations would 
discard precious inter-subject variability information.  
We implement the affine transform fitting using the 
RANSAC [11] method to ensure robustness against outliers.  
 

3. EXPERIMENTS 
 

In this section we provide initial experimental results for the 
application of the presented method. The input data consists 
of fiber sets generated by tractographic reconstruction on 
real DTI images with DtiStudio. All the fibers are re-
sampled to have n=20 representative points, leading to a 57-
dimensional fds and a 60-dimensional fcs feature vectors per 
fiber. The spatial coordinates in fcs feature vectors were 
converted to mm and then normalized to a unit less [0,1] 
range. We consider two experiments: 1) model and target 
fiber sets belong to the same brain, the target set being a 
synthetically warped version of the model set. This simulates 
the intra-subject registration of a longitudinal study. 2) 
Model and target belong to different subjects, thus 
corresponding to inter-subject registration.  In the first case 
the ground truth is known so quantitative results for the fiber 
matching and the recovered transform accuracy can be 
obtained. In the second case, as the brains are different, no 
ground truth is available and we will give qualitative results. 
 

3.1. First Experiment: intra-Subject Registration 
 

In this experiment, the model and target fiber sets are 
extracted from the same DTI brain. Target fibers are 
obtained by combining a 10 degrees rotation of the model 
fibers around x-axis with an x-wise translation vector 
(amplitude =10% of the volume width, about 26 mm). The 
raw data consists of 31 DWI volumes and 1 reference (B0) 
volume.  Each volume has 56 axial slices of 256 x 256 
pixels acquired on a 3T Ge Signa machine with a voxel size 
of 1x1 mm in axial plane and 2.6 mm in z direction without 
gap. In the following we will refer to this data as brain#1. 
DtiStudio was used for all the pre-processing, from tensor 
computation to tractographic reconstruction of the WM. The 
target fiber set has 247300 fibers (figure 1(a)), 

corresponding to the full WM tractography of brain#1 and 
warped by the above defined rigid transform. The model 
(figure 1(b)) is a set of 10280 fibers extracted manually from 
the target set before the warping. Model fibers are selected 
to represent mainly the Corpus Callosum tracts. Figure 1(c) 
shows, the set of corresponding model (green) - target (red) 
fiber pairs, found at the first ICF iteration before the warping 
step. At this point, due to the large initial misalignment, only 
330 matching fiber pairs were found. After the second 
iteration, however, full matching with zero error in model-
target assignments is achieved. Figure 1(d) shows the 
corresponding registration between model (green) and 
matched target (red). The recovered transformation is also 
identical to the ground truth at working precision. To assess 
the robustness against noise, we repeated the same 
experiment following the addition of Gaussian noise 

).,( 0300
1 to the target fibers coordinates. In figure 1(e), 

we plot the number of successfully matched fiber pairs with 
(purple) and without (black) noise addition. We can see that 
noise has limited the correct matching to 9540 target fibers 
out of 10280 model fibers, giving a 92.8 percent success 
rate. The ground truth transformation was recovered after 7 
iterations. Figure 1(f) shows the registration obtained with 
noise addition after seven iterations. 
 

3.2. Second Experiment: Inter-Subject Registration 
 

We now consider model and target originating from 
different subjects. The target fiber set is identical to that 
extracted from brain#1 in previous experiment except that 
no synthetic warping is applied to the fibers. The model set 
is extracted from another DTI brain, hereafter called 
brain#2, acquired on the same machine with 43 axial slices 
of 256x256 pixels, a voxel size of 1x1 mm in axial plane and 
3 mm in z direction without gap. For brain#2, only 16 
gradients were used for diffusion weighting. The model set 
consists of 23070 fibers from brain#2 that correspond to 
several anatomical structures, including the corticospinal 
tract. Figure 2(a,b) show the model (green) in overlap with 
the target (red) before registration. The initial misalignment, 
both in position and scale, is clearly observable. After 7 ICF 
iterations, the recovered set of model-target fiber pairs has 
converged, no more re-assignments are observed between 
iterations and the recovered affine transform remains 
unchanged at working precision. Figures 2(c,d) show the 
model (in green) in overlap with the target (red) after 
registration by 7 ICF iterations. Among 23070 model fibers, 
16400 (=71%) found a unique match in the target set. The 
remaining 6670 were assigned to previously matched target 
fibers as “second choice” correspondences and were not 
considered in the geometric transformation fitting. Here, 
ground truth does not exist due to inter-subject anatomical 

                                                 
1 The standard deviation is in normalized units, where 1 
corresponds to the largest linear dimension of the volume. 
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variability. Therefore we cannot assess if a given match is 
correct. Nevertheless, the registered and matched fiber plots 
in figures 2(e,f) look very consistent. 
 

 
Figure 1 : (a) Target fiber set; (b) Model fiber set; (c) Set of 
corresponding model (green) – target (red) fiber pairs found at the 
first ICF iteration; (d) Registration after second iteration; (e) 
Number of successfully matched fiber pairs with (purple) and 
without (black) noise addition; (f) Registration obtained with noise 
addition after seven iterations.  

 

4. SUMMARY AND CONCLUSIONS 
 

We have presented a new robust and efficient method for 
direct registration and matching of tractographic fiber BOIs 
without requiring any previous registration step of the 
original MRI scans. The BOIs can be defined arbitrarily, 
giving more flexibility in comparison to clustering based 
methods (such as [5]), in which the BOIs are defined from 
the obtained clusters.   Initial results were presented for both 
intra and inter-subject scenarios. The method showed 
promising results in both cases.  In its current matlab 
implementation, the running time for each registration 
experiments was about 20 minutes. In our case, as the ICF is 
mainly a large loop of independent operations, a C/C++ 
multi-threaded implementation on a multi-core PC may 
reduce significantly the running time.  In future work we 
intend to perform an extensive quantitative validation using 
expert defined ground-truth, and proceed to the following 
research: 1) The construction of tractographic atlases of 
healthy populations. 2) The detection of abnormal fiber 
shape as “outlier” to the registration-matching framework 

and its correlation with potential underlying pathological 
processes.  

 
Figure 2 : (a) Model (green) in overlap with the target (red) before 
registration, coronal view ; (b) Sagittal view; (c) Model (green) in 
overlap with the target (red) after registration, coronal view; (d) 
Sagittal view; (e) Registered and matched fibers in coronal view; 
(f) Sagittal view. 
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